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ABSTRACT

We study auction design when parties cannot commit to the
mechanism.  The  seller  may  change  the  rules  of  the  game  any
number of times and the buyers may choose their outside option at
any stage of the game. A dynamic consistency condition and an
optimality condition property are defined to characterize the
seller's mechanism selection behavior. The unique stationary
mechanism selection rule that meets the conditions is the English
auction.
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1 Introduction

Trust and the ability to make credible promises is central to well functioning mar-
kets. However, these preconditions cannot always be fulfilled. Badly functioning
enforcement system is a characteristic feature of many developing societies as well
as ones undergoing an institutional change. It is also typical for anonymous plat-
forms like the Internet.
By evidence and casual observations, the ascending English auction stands out

as a particularly useful mode of trading across different cultures and development
stages.1 Ascending auctions were in widespread use in the days of the Roman
Empire (the Latin root of the term "auction" means increasing). Yang (1950)
describes the ascending auctioning of clothes in Chinese monasteries in the 600
AC. Today the English auction is the far most frequently used auction format in
the Internet. For example, Lucking-Riley (2000) reports that almost 90% of the
Internet auction sites used the English auction as their selling mechanism.
It is not clear why the English auction is such a dominant auction form, and

why it is particularly so in circumstances of inadequate enforcement system. Pop-
ularity of the English auction is interesting since it is not, in general, the most
profitable auction mechanism (Myerson, 1981).2

This paper develops a theory that attempts to explain this empirical regular-
ity. The argument is not based on the profitability of the English auction but
rather its commitment properties. We claim that the English auction is the only
implementable mechanism if the market sides do not have any commitment power.
Lack of commitment power could be due to an inadequate enforcement system.
Full commitment is a standard assumption in the mechanism design theory.

In the auction set up it requires, on the one hand, that the seller (she) cannot
change the rules of the game in the middle of the play and, on the other, that
the buyers cannot leave the game once they participate it. By the commitment
assumption, it is legitimate to abstract from issues of bargaining under incomplete
information. However, it is not difficult to imagine that the seller, who has the
power to design the rules of the mechanism ex ante, may be able to redesign them
too ex post, once the information has been processed but the quo has not been
fulfilled. Familiar examples of auction manipulation include ex post bargaining
over the good, shill bidding, fees, reauctioning the good, etc..3 Redesign should
be especially difficult to prevent under inefficient occurrences.
To see what goes wrong in the absence of commitment, recall that incentive

compatibility and individual rationality are necessary for a (direct) mechanism to
work. If the seller holds the power to redesign the rules of the mechanism, she
wants to do so at least after any realization that leaves the buyers with positive
surplus. Since forward looking buyers anticipate that the seller will redesign the

1Cassady (1967) is a standard reference on the history of auctions.
2However, the English auction may be optimal in a restricted class of mechanisms, see e.g.

Milgrom and Weber (1982) or Lopomo (1998, 2001).
3See McAdams and Schwarz (2006) for analysis and discussion on changing the auction rules

e.g. of the European 3G auctions. For another angle to shill bidding, see Izmalkov (2005).
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mechanism ex post, they will adjust their play accordingly at the interim stage.4

Consequently, incentive compatibility of the mechanism breaks down.5

We analyze auction design under the benchmark hypothesis that parties do
not have any commitment power: the seller may freely change the auction rules
as many times as she wishes, and the buyers can leave the auction at any point
of the game. A novel framework is developed to analyze the problem. The idea
is to first apply the standard revelation argument to isolate possible solutions to
the seller’s mechanism selection problem, and then restrict the solutions further
with the consistency and optimization conditions that reflect the seller’s dynamic
behavior.
More precisely, we decompose the mechanism into an information processing

device and an implementation device. The information processing device can be
interpreted as a machine or a mediator that transforms the messages of the buyers
into an output - a public signal - in a reliable and secure way. No technological
constraints are imposed on the form of this information processing device. The
task of the implementation device is to choose a physical outcome contingent on
the signal that is generated by the information processing device. One should note
that decomposability is not a restriction on feasible mechanisms: any mechanism
can be decomposed in a unique way into the prescribed information processing and
implementation devices. The crucial assumption - and the reason for decomposing
the mechanism into two parts - is that the seller cannot commit to the implemen-
tation device. That is, ex post she can invoke another (composite) mechanism
rather than implement the outcome suggested by the implementation device.
The sellers mechanism design behavior is captured by a rule σ that identifies,

for each seller’s belief p, a mechanism σ(p) that the seller implements under belief
p. Two conditions are imposed on the rule σ that guarantee that a sequentially
rational seller can commit to it. The first is that the rule has to be internally
consistent : selecting a mechanism according to the rule should not be in conflict
with obeying the rule at later stages of the game. The second condition is that
the rule needs to be optimal : under any belief p the seller should not be able to
profit by deviating from σ(p) within the class of mechanisms that she can commit
to, given that she obeys σ in the future. The latter property is dubbed as the
one-deviation property. A stationarity condition, which requires that the rule is
not conditioned on payoff irrelevant information, is also assumed.
Our main result is that the payoff and information structure of any feasible

mechanism, i.e., mechanism chosen by a stationary and consistent mechanism
selection rule that also satisfies the one-deviation property, is the English auction
(indexed by a tie-breaking rule). Conversely, the rule that always chooses the
English auction is consistent, stationary, and meets the one-deviation property.
Thus the English auction is (essentially) the unique mechanism that the seller
can implement without commitment.6 Our model may therefore explain why the
Vickrey or other prominent auction forms are rare but the English auctions are

4In Freixas et al. (1985) this is called the ratchet effect.
5Unless all the surplus is extracted from the buyers á la Cremer and McLean (1988). But

this requires the buyers to commit to participate ex post.
6"Essentially" means that the auction may also reveal some immaterial information.
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common (see Rothkopf et al., 1990).
Our argument is closely related to the famous Coase conjecture, arguing that

in the one buyer scenario the seller without commitment power is forced to sell
the good with the price equal to the least possible valuation of the buyer (see Gul
et al., 1986; Fudenberg et al., 1985, Ausubel et al., 2002). For the same reason
the English auction is robust against commitment problems. The English auction
reveals (i) the buyer with the highest valuation (the winner), and (ii) valuations of
all but the winner. Since the winner is known to have the highest valuation once
the output has materialized, the seller cannot commit to sell the good anyone but
the winner. Hence, as under the Coase conjecture, the seller is forced to sell the
good to the winner with his least possible valuation which is equal to the second
highest valuation of the buyers, already revealed by the mechanism. In the one
buyer case, this argument collapses back to the standard Coase conjecture.7

Literature on mechanism design without commitment The distin-
guishing feature of this paper in the literature on mechanism design without com-
mitment is that it does not put any restrictions on mechanisms that are technically
feasible for the designer neither at the ex ante nor at the ex post stage; the prob-
lem is genuinely that of commitment. For example, there are neither discounting
nor other waiting costs.
On the modeling side, the novelty of the paper is that the commitment problem

is studied via revelation games rather than as a bottom-up extensive form game.
The reason why we focus on a reduced form expression of the true underlying game
is foremost expositional. But we do so also because we are not interested in identi-
fying all the equilibria of the game. All features of the model, i.e., multitudity of
players, unboundedness of redesign rounds, and richness of the action sets (= all
mechanisms) hint that this set would not be small. Hence, we follow the standard
mechanism design avenue by assuming (implicitly) that truthfulness, whenever
appropriately defined, is a focal feature of an equilibrium. In our framework, this
means that it is the truthful equilibrium of the reduced form of the continuation
game that is relevant. Hence, as in the standard mechanism design literature, we
implicitly assume that the seller can choose the continuation equilibrium of the
game. The key problem of the seller is to choose the continuation equilibrium in
a dynamically consistent way when information is being revealed along the play.
This is the interpretation of our equilibrium concept.
It should be emphasized that the methods developed in this work do not at-

tempt to challenge or provide an alternative to the standard equilibrium tech-
niques. Rather, the modeling here is meant to be consistent with them. The only
reason for focusing on the reduced form expressions is to penetrate into the core
aspects of the problem.
Of course, useful results can also be obtained by appealing to standard equi-

librium techniques. However, this requires somewhat more restricted domain.
McAfee and Vincent (1997) study an auction designer who can set a positive re-

7For studies on the no gap -case in the durable good monopoly scenario, see Ausubel and
Deneckere (1989a,b)
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serve price but cannot commit to not re-auction the good in the future when no
current bids exceed the reserve price. Assuming a fixed auction mechanism, they
demonstrate that as the lag before potential re-auction becomes short, the se-
quentially optimal (given re-auctioning) reserve-price produces the same expected
revenue as an auction with a reserve price equal to the seller’s valuation of the
good.
McAdams and Schwarz (2006) study the first-price auction with a seller tempted

to take further rounds of bids. The rational buyers will then prefer to wait before
making their best and final offers which induces the seller to bargain at length
with buyers. When the seller’s cost of soliciting another round of offers is very
small, the resulting equilibrium resembles that of the English auction.
Bester and Strausz (2001) and Skreta (2006) take a different route by allowing

only two rounds. However, now the second stage mechanism need not be fixed.
Bester and Strausz show that in the one buyer case the best mechanism is still
direct (however, Bester and Strausz, 2000, show that with more than one agent,
this no longer holds). But as opposed to the revelation principle, fully revealing
contracts need no longer be optimal. In Skreta’s framework, there is the additional
problem of informed principal at the second stage. Skreta (2006) shows that the
McAfee and Vincent auction is the optimal two-period mechanism for selling one
unit of a good.
Skreta (2007) is the only paper we are aware of that develops techniques of ana-

lyzing multi-stage, multi-agent mechanism design problems without commitment.
In her framework, the seller can re-auction the good if it has not been previously
sold. The innovation is that, unlike in McAfee and Vincent (1997), the seller may
employ any mechanism in way of doing this. A key assumption of Skreta’s analysis
is that there is an upper bound on the number of redesign rounds. For the sake of
a tradeoff, there is also discounting and this transforms the seller’s problem into
one of intertemporal optimization. However, the central feature of our framework
is that there is no bound on how many times the mechanism can be redesigned,
and there is no cost of waiting.8

The problem of redesign is also akin to the literature on resale in auctions
(Haile, 2000, and Zheng, 2002, are seminal contributions). Much of the focus in
this literature has been in identifying the optimal auction with resale.9 However,
this literature is fundamentally different in one respect: once the good is sold
to the buyers, the seller becomes privately informed which in general prevents
efficiency (due to Myerson and Satterthwaite, 1983). Thus the problem no longer
has the recursive structure that drives the analysis of this paper; that the design
problem and redesign problem are conceptually similar, and they should be solved
by using common principles.
Further connections to the literature are discussed in the final section.
The paper is organized as follows: Section 2 specifies the set-up and the game.

Section 3 defines the solution. The results are stated in Section 4. Section 5
8Unlike this paper, Skreta (2007) also allows the seller to become privately informed along

the play, which is a considerable complication.
9See especially Zheng (2002) but also Calzolari and Pavan (2006), Garratt and Troger (2006),

Pagnozzi (2007), Hafalir and Krishna (2008).
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concludes with discussion.

2 Set up

There is a seller of a single indivisible good and a set N = {1, ..., n} of buyers.
Seller’s publicly known valuation of the good is 0. Buyer i’s privately known
valuation θi is drawn from a discrete set Θi ⊆ R+.10 Write Θ = ×i∈NΘi with
a typical element θ = (θi)i∈N , and Θ−i = ×j 6=iΘi with a typical element θ−i =
(θj)j 6=i. 11 Denote by ∆(Θ) the set of probability distributions p over Θ, and by
pi the ith marginal distribution of p.
The set of allocations of the good is A = {(a1, ..., an) ∈ {0, 1}n : a1+ ...+ an ≤

1}, where ai = 1 if the good is allocated to i and ai = 0 otherwise. Write
a = (a1, ..., an). A money transfer from buyer i to the seller is denoted by mi ∈ R+
and m = (m1, ...,mn) is a profile of transfers. The set of all outcomes x = (a,m)
is then X = A×Rn

+.
Now we define a mechanism. A mechanism does two things: processes infor-

mation and implements an outcome. We separate these tasks. A mechanism is
a composite function φ = g ◦ h, consisting of an information processing device h
and an implementation device g such that

h : Θ→ ∆(S) and g : S → X,

where ∆(S) is the set of probability distributions over S, an open subset of an
Euclidean space. That is, the information processing device h generates, after
receiving the buyers’ messages, a public signal s ∈ S. The signal s is the only
information anyone - including the seller - obtains from h. The outcome function
g then implements an outcome x ∈ X conditional on the realized signal s.
Thus the mechanism φ = g ◦ h is a composite function

g ◦ h : Θ→ ∆(X),

where ∆(X) is the set of probability distributions over X. Letting H = {h : Θ→
∆(S)} and G = {g : S → X} denote the sets of information processing devices
and implementation devices, respectively, the set of all composite mechanisms is

Φ = {g ◦ h : Θ→ ∆(X) such that g ∈ G and h ∈ H}.

The support of distribution p is denoted by supp(p). Also write h(θ) = {s :
h(s : θ) > 0} and h(supp(p)) = {s : h(s : θ) > 0 and θ ∈supp(p)}. Given p, a
signal s ∈ h(supp(p)) of the information processing device h induces a posterior

p(θ : s, h) =
p(θ)h (s : θ)P
θ∈Θ p(θ)h (s : θ)

. (1)

10Hence countable and without accumulation points. This assumption is for expositional
simplicity.
11That is, pi(θi) =

P
θ−i p(θi, θ−i).
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To economize on notation, write p(· : s, h) = p(s, h). Since the signals are pub-
lic, p(s, h) ∈ ∆(Θ) for all s ∈ h(supp(p)). By the definition of the support,
supp(p(s, h)) ⊆supp(p).
The mechanism g ◦h is constant under p if h(supp(p)) is singleton. A constant

mechanism implementing outcome x is denoted by

1x ∈ Φ.

A constant mechanism does not affect the beliefs and always implements the same
outcome. The two mechanisms (g◦h) and (g0◦h0) are outcome equivalent under p if
they induce the same outcome function: (g◦h)(θ) = (g0◦h0)(θ), for all θ ∈supp(p).
Finally, if the information provided by the mechanism g ◦h is not finer than what
is necessary to implement the outcome, i.e., if g(s) = g(s0) implies s = s0 for all
s, s0 ∈ h(supp(p)), then we may write p(s, h) = p(g(s), g ◦ h).
Buyer θi’s and the seller’s payoffs from allocation x = (a,m) are, respectively,

ui(x, θi) = θiai −mi,

v(x) =
P
i∈N

mi.

3 Solution

The seller’s problem is that she cannot commit to the implementation device
g once the signal s has been produced by the information processing device h.
Rather, she may want to design a new mechanism under her post-signal belief.
In this section, we identify conditions that the mechanism needs to satisfy if the
seller is about to commit to it.
We appeal to the revelation principle by assuming that the mechanism is played

truthfully if and only if (i) the appropriate incentive and participation constraints
of the buyers are satisfied, (ii) the seller can commit to the mechanism. The
latter requires that the seller cannot commit to implementing any more profitable
mechanism given the post-signal beliefs. This means that the potentially more
profitable mechanisms meeting (i) need to be blocked by a yet third layer of
mechanisms which, in turn, the seller can commit to. The self-referential nature of
the blocking-relationship between the mechanisms means that there is no recursive
way to identify the feasible mechanisms. Indeed, the mechanism selection needs to
be solved for all cases simultaneously. Thus to solve (ii), novel modeling techniques
needs to be developed.

Buyers’ incentives We assume that the buyers can exit any point of the
game. Thus any implementable mechanism g ◦ h must be ex post individually
rational (EXP-IR):12

ui(g(s), θi) ≥ 0, for all s ∈ h(θ), for all θ ∈ supp(p), for all i ∈ N.

12Interim individual rationality requires that participation be weakly profitable before the
output has been realized. Ex post constraint has been analysed e.g. by Forges (1993, 1998) and
Gresik (1991, 1996).
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Given p, buyer θi’s interim payoff from a mechanism g ◦ h isP
θ

P
s

p (θ)ui(g(s), θi)h (s : θ) .

By the revelation principle (cf. Myerson, 1979), an implementable mechanism
must be incentive compatible. A mechanism g ◦ h is incentive compatible (IC) if,
for all θi, θ

0
i ∈ Θi, for all i ∈ N,P

θ−i

P
s

p (θ)ui(g(s), θi) [h (s : θ)− h (s : θ−i, θ0i)] ≥ 0.

However, incentive compatibility and ex post individual rationality are not inde-
pendent conditions: veto right might be exercised at the off-equilibrium nodes.
The following simple extension of incentive compatibility resolves the problem by
allowing i veto the outcome also after his untruthful announcements.13

Definition 1 (VETO-IC) Given p, a mechanism g ◦ h ∈ Φ is veto-incentive
compatible if, for all θi, θ0i ∈ Θi, for all i ∈ N,P

θ−i

P
s

p (θ) [ui(g(s), θi)h (s : θ)−max{ui(g(s), θi), 0}h (s : θ−i, θ0i)] ≥ 0. (2)

Veto-incentive compatibility requires that truthful reporting forms a Bayes-
Nash equilibrium even if vetoing is possible after untruthful announcement. Any
implementable mechanism must thus be veto-incentive compatible. For any p,
denote the set of veto-incentive compatible mechanisms by

V IC[p] ⊂ Φ.

It is easy to see that any veto-incentive compatible mechanism is incentive com-
patible and ex post individually rational (but not vice versa).14

Truthful announcements form a Bayes-Nash equilibrium in a veto-incentive
compatible mechanism φ = g ◦ h if the seller can commit to following g after h
has performed its information processing task, i.e., produced its signal s. Thus
a mechanism maximizing the seller’s payoff subject to the veto-incentive com-
patibility could be interpreted as the seller’s full commitment benchmark. Since
veto-incentive compatibility concerns only the payoffs, any signal structure - even
a one that fully reveals the buyers’ types - is consistent with veto-incentive com-
patibility. However, while signals do not affect anyone’s payoff directly, they may
do so indirectly, via seller’s behavior at the ex post stage.

Seller’s incentives The seller’s expected payoff from a mechanism φ = g ◦h
is

v(φ, p) =
P
θ

P
s

p(θ)v(g(s))h (g(s) : θ) .

13Veto-incentive compatibility is due to Forges (1998), and is closely related to IC* of Matthews
and Postlewaite (1989).
14Choose θi = θ0i in (2). We only need EXP-IR and IC in the remainder of the paper.
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She wants to maximize her expected payoff subject to the constraint of not re-
designing the mechanism after observing the signal s from the information process-
ing device h. That is, of replacing the outcome g(s) with another mechanism in
Φ that generates her a higher expected payoff than g(s). Our task is to identify
conditions under which she will not do that.
Let the seller’s (pure) mechanism design strategy be captured by a choice rule

σ that specifies, for each prior belief p, a mechanism that the seller can commit
to under these beliefs:

σ : ∆(Θ)→ Φ such that σ[p] ∈ V IC[p], for all p. (3)

Then σ[p] represents the mechanism that the seller implements under p. Rule σ
represent in reduced form the dynamic mechanism selection strategy of the seller.
We now identify properties that the choice rule σ should satisfy. We argue

that sequential rationality of the seller, and the buyers’ knowledge of this, asks σ
to reflect internal consistency and maximization. To present these conditions, we
develop some concepts. We say that a mechanism g ◦ h ∈ Φ is (weakly) ex post
dominated by a mechanism φ ∈ Φ if there is a signal s ∈ h(supp(p)) such that

v(φ, p(s, h)) ≥ v(g(s)) and φ 6= 1g(s) under p(s, h).
That is, the seller weakly prefers φ over the recommended outcome g(s), given the
ex post information due to signal s. In such case, the original mechanism g ◦ h
may be subject to redesign. It is easy to see that in a typical scenario, there is no
veto-incentive compatible mechanism that is not ex post dominated.15 Thus the
seller is typically (weakly) tempted to redesign the mechanism.
Under prior p, denote by Cσ[p] the set of mechanisms that are not subject to

redesign under the hypothesis that σ is followed ex post:

Cσ[p] = {g ◦ h ∈ V IC[p] : g ◦ h is not ex post dominated by σ[p(s, h)], for any s ∈ h(supp(p))} .
(4)

Hence, by the revelation principle, and under the hypothesis that the seller can
commit to the choice rule σ :

• a mechanism φ is truthfully playable if φ ∈ Cσ[p], since then it will not be
redesigned ex post, and

• a mechanism φ is not truthfully playable if φ 6∈ Cσ[p], since then it will be
redesigned ex post.

We now specify formally conditions that sequential rationality imposes on the
choice rule σ. The first condition requires consistency in the sense that employing
σ ex ante should not contradict σ being employed ex post.

Definition 2 (Consistency) Choice rule σ is consistent if σ[p] ∈ Cσ[p], for all
p.

15If 0 ∈supp(pi) for all i, then a veto-incentive compatible mechanism is not ex post dominated
only if extracts all surplus from the buyers. But full surplus extraction á la Cremes and McLean
(1984) is not possible under veto-incentive compatibility.
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The second condition implies optimality. Given σ and p, the seller should
choose a mechanism that maximizes her payoff in the set Cσ[p].

Definition 3 (One-Deviation Property) Choice rule σ satisfies the one-deviation
property if v(σ[p], p) ≥ v(φ, p), for all φ ∈ Cσ[p], for all p.

Under the hypothesis that σ can be committed to in the future, the seller
does not want to change σ under any current prior p. Without the one-deviation
property σ could not be convincingly committed to. One-deviation property is in
line with standard equilibrium reasoning. Indeed it is often drawn as a consequence
of it.
Now we state two straightforward but important implications of consistency

and the one-deviation property. First, the seller always implements the outcome
of a mechanism that she can commit to.

Lemma 1 Let σ be consistent and satisfy the one-deviation property. Then g◦h ∈
Cσ[p] implies that σ[p(s, h)] = 1g(s), for all s ∈ h(supp(p)).

Proof. Take any s ∈ h(supp(p)). By consistency, g ◦ h is not ex post domi-
nated by σ[p(s, h)] under p. By the definition of ex post dominance, 1g(s) is not
ex post dominated by σ[p(s, h)]. Hence either v(g(s)) > v(σ[p(s, h)], p(s, h)) or
v(g(s)) = v(σ[p(s, h)], p(s, h)) and σ[p(s, h)] = 1g(s). By the one-deviation prop-
erty, v(σ[p(s, h)], p(s, h)) ≥ v(g(s)). Hence it must be the case that σ[p(s, h)] =
1g(s).

In particular, the choice rule σ is idempotent in the following sense: if σ[p] =
g ◦ h, then σ[p(s, h)] = 1g(s), for all s ∈ h(supp(p)). That is, running σ twice in a
row rather than once will not affect the outcome.
Second, if the seller can commit to implementing an outcome, then that out-

come must maximize her payoff in the class of individually rational outcomes.

Lemma 2 Let σ satisfy the one-deviation property. Then σ[p] = 1x implies that
v(x) ≥ v(y), for all 1y ∈ V IC[p].

Proof. Let σ[p] = 1x, v(x) < v(y), and 1y ∈ V IC[p]. Since σ[p] ∈ V IC[p],
and since neither 1x nor 1y are ex post dominated by 1x, we have 1x,1y ∈ Cσ[p].
But this violates the one-deviation property.

We now check that our solution is consistent with the standard bargaining
theory.

The Coase conjecture The Coase conjecture, which pertains to our n = 1
case, argues that when the seller is unable to commit not to sell the good, the
buyer is able to extract all the surplus. That is, the outcome of the one-sided
bargaining game is to sell the good with price θ(p), the minimal possible valuation
θ in the support of p. The Coase conjecture has been extensively studied in the
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non-cooperative bargaining literature, and verified in the so called "gap" case
θ(p) > 0 e.g. by Fudenberg et al. (1985) and Gul et al. (1986).
The next proposition shows that the result can be derived also in our set up,

without going into the details of the bargaining process. Thus consistency and the
one-deviation property do capture the key aspects of sequential rationality.

Remark 1 (Gap-case) Let n = 1. Let σ be a consistent choice function meeting
the one-deviation restriction. Then σ[p] = 1(1,θ(p)), for all p such that θ(p) > 0.

That is, any σ[p] sells the good to the buyer with the price equal to his min-
imal possible valuation. To see this, note that by Lemma 1, σ[p(s, h)] = 1g(s),
for all s ∈ h(supp(p)). By Lemma 2, g(s) maximizes v in the class of constant,
individually rational mechanisms under p(s, h). Since θ(p(s, h)) > 0 we have
g(s) = (1, θ(p(s, h))). But by imitating θ = θ(p) > 0, any θ0 ∈supp(p) can guaran-
tee to be able to buy the good with price θ(p). Hence by incentive compatibility,
g(h(θ)) = (1, θ(p)), for all θ ∈supp(p).
However, it is also well known that in the "no gap" -case, θ(p) = 0, other more

complex equilibria can be constructed (see e.g. Ausubel and Deneckere, 1989).
To avoid them, the literature often focusses on simple "stationary" equilibria (see
e.g. Ausubel et al., 2001).
The problem with multiplicity of complex solutions applies also in our case

when θ(p) = 0. It can be shown that for any λ ∈ Θ there is a choice rule σλ that
is consistent and meets the one-deviation property, and sells to types θ ≥ λ and
never to types θ < λ of the buyer given the prior p (see Appendix B for precise
exposition). However, all constructed σλ are complex, and require the seller to
condition σλ on seemingly superficial information. To remove these complexities,
our final restriction imposes a degree of simplicity on choice rules. It demands
that the implemented outcome is not conditioned on information that does not
provide more profitable transaction opportunities.

Definition 4 (Stationarity) A choice rule σ is stationary if σ[p] = 1x, σ[p0] =
1x0 , v(x) ≥ v(x0), and supp(p0) ⊆ supp(p) imply x = x0.

That is, signals that do not allow the seller to implement a more profitable
choice do not affect the seller’s choice. For example, the choice rule σλ above fails
stationarity.16 The next section characterizes the inducable stationary choice rules
in the general n ≥ 1 case.

4 Results

The English auction φE The tie-breaking rule w always selects one of the
players with the highest valuation:

w(θ) ∈ arg max
j∈N∪{0}

θj, for all θ ∈ Θ. (5)

16For an analogous restriction, see Ausubel and Deneckere (1992).
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Moreover, if w(θ) = 0, then θj = 0 for all j ∈ N .
Given a prior distribution p and a tie-breaking rule w, we now construct a

deterministic mechanism φE (·) = gE
¡
hE(·)¢ , an English auction.17 Label the

elements of a subset of the signal set SE ⊂ S by

SE = {(w(θ), θ−w(θ)) : θ ∈ Θ},
and define a deterministic information processing device hE : Θ→ SE such that

hE(θ) = (w(θ), θ−w(θ)), for all θ ∈ Θ.

In order to specify the implementation device gE, construct the winner’s money
transfer rule as follows: for any i ∈ N,

mE(i, θ−i, p) = min{θ0i : (θ0i, θ−i) ∈ w−1(i) ∩ supp(p)}, if θ ∈ w−1(i). (6)

That is, mE(i, θ−i, p) is the smallest possible valuation of i given the information
that (i) i is the winner, (ii) the other buyers’ types are θ−i. The implementation
device gE : SE → X now satisfies, for each buyer j ∈ N , for all (i, θ−i) ∈ SE,

gEj (i, θ−i) =
½
(1,mE(i, θ−i, p)), if j = i,
(0, 0), if j 6= i.

(7)

That is, φE(θ) = gE(hE(θ)) allocates the good to the winner i = w(θ) who pays
a price equal to his least possible valuation (i) given the other players’ types, (ii)
the fact that he is the winner, and (iii) p.18 The corresponding payoffs are

ui
¡
φE(θ), θi

¢
=

½
θi −mE(i, θ−i, p), if θ ∈ w−1(i) ∩ supp(p),
0, if θ 6∈ w−1(i) ∩ supp(p).

By construction, φE is efficient and the price paid by the winner is less than
or equal to his valuation, and at least as high as the other buyers’ valuations.19

Moreover, since the winner i becomes publicly known with the signal s = (i, θ−i),
the posterior belief p((i, θ−i), hE) satisfies

supp(p((i, θ−i), hE)) ⊆ w−1(i). (8)

Since the mechanism is straightforward, i.e., there is a bijection between the do-
main and range of gE, we may denote the posterior p(s, hE) by p(x, φE).
Mechanism φE has the familiar pivotal structure: a buyer’s payment - and

hence his payoff - is independent of his announcement as long as he wins (or
loses). The impact of lying on his payoff cannot be positive since it either induces
the buyer to win when he would like to lose or to lose when he would like to win.
Since truthtelling forms an equilibrium,

φE ∈ V IC[p].

17We relax w from the description of the English auction φE for notational simplicity.
18Note that φE(p) reveals only the winner’s identity and the other players’ valuations. Hence

it cannot be interpreted as the Vickrey (second-price) auction which asks all buyers to reveal
their valuations.
19When the valuations are correlated, there may be a gap between this and the second highest

valuation
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Feasible choice rules To highlight the fact that in the above definition the
English auction is conditioned on the prior p, denote it by φE[p]. Now the function
φE : ∆(Θ)→ Φ can be taken as the the English auction -choice rule. Construct a
correspondence CφE ⊂ V IC such that

CφE [p] =
©
φ ∈ V IC[p] : φ is not ex post dominated by φE[p0], for any p0 ∈ ∆(Θ)

ª
.

Note that the English auction -choice rule is idempotent: φE[p(x, φE[p])] =
1x, for all x ∈ φE[p](supp(p)), for all p. That is, after running the English auction,
a new English auction does not change the outcome. This implies that the English
auction φE[p] is not ex post dominated by φE[p(x, φE[p])]. Hence it follows that
φE[p] ∈ CφE [p] for all p. More compactly:

Lemma 3 φE[·] is consistent.

If φE[p] also maximizes v in CφE [p] for all p, then φE satisfies the one-deviation
property. We now show that this necessarily holds: any mechanism in CφE [p] is
outcome equivalent - and hence payoff equivalent - with the English auction φE[p].

Lemma 4 φ ∈ CφE [p] only if φ is outcome equivalent to φE[p], for all p.

Proof. Relegated to Appendix A.

That is, given p, the only veto-incentive compatible mechanisms that are not ex
post dominated by any φE[p0] are the mechanism φE[p] itself and its versions that
may additionally reveal some non-relevant information concerning the winner’s
type. Thus φE has a "fixed point" property.
We next demonstrate that any stationary σ that is consistent and meets

the one-deviation property induces Cσ that contains φE, specified for some tie-
breaking rule w. Heuristically, if φ ex post dominates φE[p], then φ must change
φE[p]’s allocation. Since any outcome x of φE[p] reveals the winner and his least
possible valuation given the other buyers’ valuations, φ must threaten the win-
ner to sell the good to the buyer with the second highest valuation to force the
winner to pay a higher price. However, the threat is not credible since when the
winner declines the offer, the seller sells, by stationarity, to the winner with his
least possible valuation.

Lemma 5 Let a stationary choice rule σ be consistent and satisfy the one-deviation
property. Then there is a tie-breaking rule w such that φE[p] ∈ Cσ[p], for all p.

Proof. Construct w as follows: For any θ ∈ Θ, denote by 1θ the degenerate
prior such that supp(1θ) = {θ}. Then there is an outcome xθ such that σ[1θ] = 1xθ .
Let w(θ) = i if xθ allocates the good to i. By Lemma 2, such w(θ) satisfies (5).
Use this w to construct φE.
Suppose, to the contrary of the claim, that there is p such that φE[p] 6∈ Cσ[p].

Then φE[p] is ex post dominated by σ[p(x, φE[p])] for some x ∈ φE[p](supp(p)).
Denote σ[p(x, φE[p])] = g ◦ h.

12



Let x allocate the good to player i. By stationarity, since g◦h ex post dominates
1x, g ◦ h cannot be a constant mechanism. By IC there are θ0 ∈supp(p(x, φE[p])),
s ∈ h(θ0), and j 6= i such that θ0i = θ0j, and such that g(s) allocates the good to j.
By Lemma 1, 1g(s) = σ[p(x, φE[p])(s, h)]. Since

1x ∈ V IC[p(x, φE[p])] ⊆ V IC[p(x, φE[p])(s, h))],

it follows by Lemma 2 that v(g(s)) ≥ v(x).
By (8), supp(p(x, φE[p])) ⊆ Yi and, by the definition of support,

supp(p(x, φE[p])(s, h)) ⊆ supp(p(x, φE[p])).
Thus, by the construction of w, EXP-IR, and Lemma 1, σ[1θ0 ] = 1x.However, since
g(s) ∈ h(θ0), also supp(1θ0) ⊆supp(p(x, φE[p])(s, h)). This implies, by stationarity,
that g(s) = x, violating the assertation that x allocates the good to i and g(s) to
j 6= i.

Now we prove that if a stationary σ is consistent and meets the one-deviation
property relative to C, then there is a tie-breaking rule w such that no element of
C[p] is ex post dominated by φE for any q.

Lemma 6 Let a stationary choice rule σ satisfy consistency and the one-deviation
property. Then Cσ[p] ⊆ CφE [p], for all p, for some tie-breaking rule w.

Proof. Let g ◦h ∈ Cσ[p] and s ∈ h(supp(p)). Denote x = g(s) and q = p(s, h).
By Lemma 1, σ[q] = 1x. Identify w as in Lemma 5. It suffices for us to show
that 1x is not ex post dominated by φE[q]. Suppose, to the contrary, that it
is. By Lemma 5, φE[q] ∈ Cσ[q]. By the definition of one-deviation property,
v(σ[q], q) ≥ v(φE[q], q). Thus v(x) ≥ v(φE[q], q).
Take any y ∈ φE[q](supp(q)). Then supp(q(y, φE[q])) ⊆supp(q) and, hence,

x ∈ {x0 : 1x0 ∈ V IC[q]} ⊆ {x0 : 1x0 ∈ V IC[q(y, φE[p])]}.
Since, by Lemma 1, σ[q(y, φE[q])] = 1y and 1x ∈ V IC[q(y, φE[q])], it follows
by Lemma 2 that v(x) ≤ v(y). Since y was arbitrary, and v(x) ≥ v(φE[q], q),
the inequality must hold as equality. But then, since supp(q(y, φE[q])) ⊆supp(p),
stationarity implies that x = y. Thus φE[q] = 1x, which contradicts the hypothesis
that φE[q] ex post dominates 1x.

By Lemma 6, a stationary and consistent σ that meets the one-deviation prop-
erty is not ex post dominated by some English auction. Hence σ[p] cannot allocate
the good to anyone but the buyer with the highest valuation. Therefore, σ[p] must
be efficient. Another way to put this is that commitment inability of the seller
leads to an efficient allocation, as suggested by the ”Coase theorem".
Since σ[p] is efficient, and the lowest type of a buyer earns zero payoff, the

revenue equivalence theorem implies that φE[p] is the (generically) unique im-
plementable mechanism if the buyers’ valuations are independent. However, we
can say more: by Lemma 4, if the seller is unable to commit, the uniqueness of
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the implementable mechanisms is a general phenomenon and holds for any prior
distribution.
For an illustrative example, let N = {1, 2} and Θ =supp(p) = {5, 10}2. Let,

say, w(10, 10) = w(10, 5) = w(5, 5) = 1 and w(5, 10) = 2. Take φ ∈ Cσ[p]. Since
1x is not ex post dominated by φE[p(x, φ)] for any x ∈ φ(supp(p)), φ(θ) allocates
the good to buyer 1 under all θ ∈ {(5, 5), (10, 5), (10, 10)}. Transfers from 1 under
θ = (5, 5) and θ = (10, 10) are 5 and 10, respectively. By incentive compatibility,
transfer from 1 under φ(10, 5) is 5. Since only φ(5, 10) allocates the the good to
2, 2s type θ2 = 10 is then revealed. Hence his transfer must be 10 which means
that φ = φE[p] under p.
Now we are ready to state our main result.

Theorem 1 1.Choice rule φE[·] is consistent and satisfies the one-deviation prop-
erty, for any tie-breaking rule w.
2. If a stationary choice rule σ is consistent and satisfies the one-deviation

property, then there is a tie-breaking rule w such that σ[p] is outcome equivalent
to φE[p], for all p.

Proof. 1. Consistency follows from Lemma 3. Since, by Lemma 4 any φ ∈
CφE [p] agrees with φE[p] on X and hence induces the same payoff as φE[p], it
follows that φE[p]maximizes v on CφE [p] under p. Thus the one-deviation property
is implied.
2. Let stationary rule σ be consistent and satisfy the one-deviation property.

By Lemma 5, there is w and Cσ such that φE ∈ Cσ. By Lemma 6, Cσ ⊆ CφE . By
construction, σ ∈ Cσ. Thus, by Lemma 4, σ[p] is outcome equivalent to φE[p], for
all p.

That is, the seller can commit to the English auction provided that she does
that consistently, under all scenarios. Moreover, the payoff structure of every
feasible auction coincides that of the English auction (defined for some tie breaking
rule w). The only difference of a committable mechanism and the English auction
may concern additional, payoff irrelevant information on the player’s valuations.
It is interesting that while full surplus extraction is feasible under full commit-

ment under almost all p (Crémer and McLean, 1988), only the English auction is
feasible without commitment.20

The generalized Coase conjecture With the stationarity assumption the
Coase conjecture can now also be verified in the "no gap" case. By Theorem 1.2., if
σ is stationary, consistent, and meets the one-deviation property, then σ[p] = φE[p]
which always allocates the good to the buyer θ > 0 with priceminw−1(1)∩supp(p).
To conclude, if one accepts the Coase conjecture, that the mechanism φE[p] is

the unique feasible mechanism in the n = 1 case when the seller cannot commit
to not sell to the buyer who values the good more than she does, then there is
no reason not to accept also a more general version of the claim saying that in

20See also McAfee and Reny (1992).
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the n ≥ 1 case φE[p] is still the unique feasible mechanism when the seller cannot
commit to not sell to the buyer who values the good more than the buyer with the
second highest valuation. This suggests a generalization of the Coase conjecture:
Without external commitment devices, the seller can commit only to the English
auction.

5 Discussion

Mechanism design requires commitment since at the ex post stage, when the mech-
anism has produced information needed for choosing the output, the seller may
want to change the rules of the game and implement a new mechanism. We have
studied auction mechanisms that the seller can commit to implement. Two con-
ditions reflecting sequential rationality of the seller have been imposed on the
feasible mechanism selection rule. The conditions are internal consistency and
an optimality condition called one-deviation property. We show that the unique
mechanism that satisfies the restrictions (and a stationarity condition) is a version
of the traditional English auction.
At the heart of the analysis is the argument that a sequentially rational seller

can always commit to the English auction when her choices are stationary. This
idea can be seen as a generalization of the Coase conjecture (e.g. Fudenberg et al.,
1985; Gul et al., 1986). In the one buyer case, the seller cannot commit (under
stationary strategies) to not to sell the good to the buyer with strictly positive
valuation. In the multiple buyers case, the seller cannot commit not to sell the
good to the buyer with the highest valuation. The reason is that the seller can
always commit to the English auction and hence she cannot commit to mechanisms
that are ex post dominated by the English auction. Our main result is that this
constraint is very severe: only versions of the English auction satisfy it.21

One may wonder whether the ex post domination criterion in the definition
of one-deviation property is needlessly strong. A natural weaker candidate would
be to demand strict payoff dominance. Strict domination would, however, be in
conflict with our basic assumption that the seller’s mechanism selection rule is
dependent only on the prior p. To see this, consider the n = 2 case and supp(p) =
{0}×{0, 1}.With the tie-breaking rule w that allocates the good under θ = (0, 0)
to buyer 2, mechanism φE[p] would always sell to buyer 2 with price 0.With strict
domination criterion, a procedure that sells to 1 under θ = (0, 0) with price 0 and
to 2 under θ = (0, 1) with price 1 would be not be strictly ex post dominated. And
selling to 1 under θ = (0, 0) with price 0 would be in conflict with φE[q] where
prior q is degenerate on θ = (0, 0). Combining strict dominance with sequential
rationality would therefore require history dependent choices, and the mechanism
selection rule σ would no longer be definable as a function of p alone. However,
while this seems to be technically burdensome, an analogue of Theorem 1 should
hold with a history dependent tie-breaking rule. I conjecture that the English

21Milgrom (1987) argues that the core implements the efficient allocation under complete
information.
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auction with some tie-breaking would rule still be the unique feasible auction
form.
Our model provides support to the English auction in the general class of auc-

tion mechanisms. Many studies have demonstrated the usefulness of the English
auction in a restricted class of mechanisms. In a classic treatise, Milgrom and
Weber (1982) show that the English auction is optimal among the four standard
auction forms when the valuations are affiliated, a natural assumption in many
auction scenarios.22 In the same model, Lopomo (1998, 2001) demonstrates that
the English auction features robustness in a sense that it is optimal among simple
sequential auctions and in a class of posteriorly implementable auctions (a concept
due to Green and Laffont, 1987).
Posterior implementability requires that the buyers’ behavior is regret-free in

a sense that they would not want to change their behavior even if they knew the
outcome of the mechanism. This property is at the heart of the robustness of the
English auction and the Vickrey auction.23 It is partly driving also our results.
Due to posterior implementability, running the English or the Vickrey auction
twice in a row rather than just once will not affect the outcome. This implies
that the English auction is idempotent in the sense of Lemma 1. But this is only
a necessary condition of a feasible auction. On the sufficient side, one needs to
guarantee that the seller cannot commit to any more profitable auction at the ex
post stage, given the information that is generated by the mechanism. That the
English auction does well also in this respect is not a consequence of posterior
or ex post implementability. For example, the Vickrey auction reveals too much
information as also the winner’s type is revealed. Thus the unique feasibility of
the English auction is due to both its posterior implementability and its innate
informational properties.
But one can also see the situation the other way around. Since Wilson (1987),

a recurrent theme in mechanism design literature has been that a good theory
should not rely too heavily on assumptions of common knowledge. Motivated
by the Wilson Doctrine, many authors have proceeded by imposing conditions
such as ex post implementability on choice rules, as explained by Chung and Ely
(2007), which presumably mirrors detail-freeness. It is, however, not completely
clear what kind of behavioral implications does the restriction have. Is there a
theoretical reason arising from the players’ behavior that justifies detail-freeness
as an assumption? Our model provides one such motivation: detail-freeness is bad
if the seller cannot commit to the mechanism. In the absence of commitment, an
implementable mechanism needs to have a degree of vagueness and hence only the
ex post implementable English auction is feasible. Note that this applies also to
the case of correlated valuations.24

22Including the English, Vickrey, Dutch, and first-price auctions. However, Matthews (1987)
and Maskin and Riley (1984) show that risk-aversion reverses the ranking.
23The English auction also satisfies a stronger condition of ex post implementability: that one

does not want to change his own behavior even if one knows the behavior of the other players.
See e.g. Bergeman and Morris (2005, 2008).
24Chung and Ely (2007) provide a related motivation, stemming from the seller’s uncertainty

aversion.
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Finally, our model provides also some insights into the literature on optimal
auctions under efficiency (e.g. Ausubel and Cramton 1999; Krishna and Perry,
1998). The efficiency restriction is usually motivated vaguely by appealing to
”Coasian dynamics”, which leads to efficient allocation of resources through the
seller’s commitment inability, or resale markets.25 This paper is explicit on how
efficiency emerges as a consequence of sequentially rational redesigns of auction
mechanisms.
25Zheng (2002) is an exception. He characterizes outcome functions that can be implemented

with explicit resale markets. See also Haile (2000) for a formal modelling of retrading.
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A Appendix

Proof of Lemma 4

First assume that φ = g ◦ h is deterministic, i.e., φ(θ) = g(h(θ)) is singleton
for all θ. We show that g(h(θ)) = φE[p](θ), for all θ ∈ Θ. Denote, for notational
simplicity, Yi = {θ ∈ Θ : w(θ) = i} for all i.
Since g ◦ h is not ex post dominated by φE[p(s, h)] for any s ∈ h(supp(p)),

g(h(θ)) has to allocate the good to the same buyer as φE[p] (θ) does, for all θ.
Thus the partition {Yi} specifies the winner under g ◦h. Since, by EXP-IR, a non-
winner cannot be imposed a strictly positive monetary transfer, the allocation of
g(h(θ)) may differ from φE[p] (θ) only in the winner’s monetary transfer. Denote
the winner’s monetary transfer under g(h(θ)) by mi(θ). Our task reduces to
showing that mi(θ) = mE(i, θ−i, p), for all θ ∈ Yi, for all i.
Fix i. Since Θi is discrete and bounded below, we can order its elements by

θ0i < ... < θki < ... . We prove by induction that mi(θ
k
i , θ−i) = mE(i, θ−i, p), for

all θ−i such that (θki , θ−i) ∈ Yi, for all k = 0, 1, ... . Assume that the induction
hypothesis holds until step k − 1, i.e.,

mi(θ
l
i, θ−i) = mE(i, θ−i, p), for all (θli, θ−i) ∈ Yi ∩ supp(p), for all l = 0, ..., k − 1.

(9)
We show that (9) holds also for step k.
Take any s ∈ h(supp(p)). Since φ does not leave surplus to the winner that

could be extracted by φE(p((x, s), φ)),

mi(θ
k
i , θ−i) ≥ mE(i, θ−i, p(s, h)), for all (θki , θ−i) ∈ supp(p(s, h)).

Since supp(p(s, h)) ⊆supp(p),

mE(i, θ−i, p(s, h)) ≥ mE(p, θ−i), for all (θki , θ−i) ∈ supp(p(s, h)). (10)

Noting that (10) holds for all s ∈ h(supp(p)), it follows from the above two con-
ditions that

mi(θ
k
i , θ−i) ≥ mE(i, θ−i, p), for all (θki , θ−i) ∈ supp(p). (11)

It remains to be shown that the weak inequality in (11) holds as equality.
By (6),

mE(i, θ−i, p) = θki for all (θ
k
i , θ−i) ∈ Yi ∩ supp(p) such that (θk−1i , θ−i) 6∈ Yi. (12)

This has two implications. First,P
(θki ,θ−i,)∈Yi

[θk −mE(i, θ−i, p)]p(θki , θ−i) =
P

(θk−1i ,θ−i)∈Yi
[θk −mE(i, θ−i, p)]p(θki , θ−i).

(13)
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Second, by (11), mi(θ−i, θki ) ≥ θki for all mi(p, θ−i) = θki for all
¡
θki , θ−i

¢ ∈
Yi∩supp(p) such that

¡
θk−1i , θ−i

¢ 6∈ Yi. By VETO-IC and this property,P
(θki ,θ−i)∈Yi

[θki −mi(θ
k
i , θ−i)]p(θ

k
i , θ−i) (14)

≥ P
(θki ,θ−i)∈Yi

max{θki −mi(θ
k−1
i , θ−i), 0}p(θki , θ−i)

=
P

(θk−1i ,θ−i)∈Yi
max{θki −mi(θ

k−1
i , θ−i), 0}p(θki , θ−i).

By the induction hypothesis (9),

θki −mi(θ
k−1
i , θ−i) = θki −mE(i, θ−i, p), for all (θk−1i , θ−i) ∈ Yi ∩ supp(p). (15)

By (15) and (12), P
(θk−1i ,θ−i)∈Yi∩supp(p)

max{θki −mi(θ
k−1
i , θ−i), 0}p(θki , θ−i)

=
P

(θk−1i ,θ−i)∈Yi∩supp(p)
[θki −mE(i, θ−i, p)]p(θki , θ−i)

=
P

(θk−1i ,θ−i)∈Yi
[θki −mE(i, θ−i, p)]p(θki , θ−i).

Thus, P
(θk−1i ,θ−i)∈Yi

max{θki −mi(θ
k−1
i , θ−i), 0}p(θki , θ−i)

≥ P
(θk−1i ,θ−i)∈Yi

[θki −mE(p, θ−i)]p(θki , θ−i).

This together with (14) imply thatP
(θki ,θ−i)∈Yi

[θki −mi(θ
k
i , θ−i)]p(θ

k
i , θ−i) ≥

P
(θk−1i ,θ−i)∈Yi

[θki −mE(i, θ−i, p)]p(θki , θ−i).

Thus, by (13),P
(θki ,θ−i)∈Yi

[θki −mi(θ
k
i , θ−i)]p(θ

k
i , θ−i) ≥

P
(θki ,θ−i)∈Yi

[θki −mE(i, θ−i, p)]p(θki , θ−i),

and hence P
(θki ,θ−i)∈Yi

mi(θ
k
i , θ−i)p(θ

k
i , θ−i) ≤

P
(θki ,θ−i)∈Yi

mE(i, θ−i, p)p(θki , θ−i). (16)

Finally, (16) implies that (11) holds as equality, as desired.
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Finally we check the case of random h. Note that even if g◦h is random, it has
to allocate the good to the same buyer as φE[p] does. Thus randomness of g ◦ h
may only concern the monetary transfer m. The proof, which is by induction,
proceeds along the above lines. It is easy to verify that (11) holds also for any
randomly generated monetary transferm under

¡
θki , θ−i

¢
.Moreover, (16) needs to

hold for the expected transfer m̄ under
¡
θki , θ−i

¢
. Again, this just means that (11)

holds as equality for each m, thus mE(i, θ−i, p) is implemented with probability
one under all

¡
θki , θ−i

¢ ∈supp(p). This completes the proof.
B Appendix

Non-stationarity of σλ

Let n = 1 and assume the "no gap" -case 0 ∈ Θ 6= {0}.We construct a seller’s
choice function σλ that allows the seller to commit to any price λ ∈ Θ. Define a
take-it-or-leave-it offer

φλ(θ) =

½
(1, λ), if θ ≥ λ,
(0, 0), if θ < λ.

That is, "sell with price λ to any type θ at least λ and do not sell to anyone else".
Define σλ such that

σλ[p] =

½
φλ, if 0, λ ∈ supp(p),
1(1,θ(p)), otherwise.

We claim that σλ satisfies the one-deviation property.
(i) If 0, λ ∈supp(p), then {(1, λ), (0, 0)} = σλ[p]. Now:
- 0 < λ = θ(p((1, λ), σλ[p])) and thus σλ[p((1, λ), σλ[p])] = 1(1,λ), and
- 0 = θ(p((0, 0), σλ[p])) and thus σλ[p((0, 0), σλ[p])] = 1(0,0).
(ii) If 0 6∈supp(p) and/or λ 6∈supp(p), then σλ(p) = 1(1,θ(p)) and σλ(p) = 1(0,0),

respectively.
Since constant mechanisms do not affect beliefs, σλ satisfies the one-deviation

property. Thus, the seller can commit to any price λ ∈supp(p).
We now argue that σλ is not stationary. To see this, let 0, λ ∈supp(p). Find

the degenerate prior 10 such that supp(10) = {0} 63 λ. Then supp(10) ⊂supp(p).
However, σλ[10] = 1(1,0) and v((1, 0)) = v((0, 0)) = 0, violating stationarity.
This result is analogous to Ausubel and Deneckere (1989), who show that any

price can be supported in equilibrium in the one sided offers bargaining game
when the discount factor δ tends to 1. Strategies needed for these equilibria are
complicated, i.e. non-stationary.
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